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Abstract—Network quantization has emerged as a promis-
ing method for model compression and inference acceleration.
However, tradtional quantization methods (such as quantization
aware training and post training quantization) require original
data for the fine-tuning or calibration of quantized model, which
makes them inapplicable to the cases that original data are not ac-
cessed due to privacy or security. This gives birth to the data-free
quantization with synthetic data generation. While current DFQ
methods still suffer from severe performance degradation when
quantizing a model into lower bit, caused by the low inter-class
separability of semantic features. To this end, we propose a new
and effective data-free quantization method termed ClusterQ,
which utilizes the semantic feature distribution alignment for
synthetic data generation. To obtain high inter-class separability
of semantic features, we cluster and align the feature distribution
statistics to imitate the distribution of real data, so that the
performance degradation is alleviated. Moreover, we incorporate
the intra-class variance to solve class-wise mode collapse. We also
employ the exponential moving average to update the centroid
of each cluster for further feature distribution improvement.
Extensive experiments across various deep models (e.g., ResNet-
18 and MobileNet-V2) over the ImageNet dataset demonstrate
that our ClusterQ obtains state-of-the-art performance.

Index Terms—Model compression, data-free quantization, data
generation, semantic feature distribution alignment, DNNs.

I. INTRODUCTION

DEEP neural network (DNN)-based models have obtained
remarkable progress on computer vision tasks due to its

strong representation ability [1]–[5]. However, DNN models
usually suffer from high computational complexity and mas-
sive parameters, and large DNN models require frequent mem-
ory access, which will lead to much more energy consumption
and inference latency [6]. Moreover, it is still challenging to
deploy them on the edge devices due to the limited memory
bandwidth, inference ability and energy consumption.

To solve aforementioned issues, massive model compression
methods have emerged to improve the efficiency of DNN
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Fig. 1. t-SNE visualization comparison of the 19-th layer features of ResNet-
20 [2] inferring on the CIFAR10 dataset [39] (a), and the synthetic data
generated by ZeroQ [19] (b).

models, e.g., pruning [7]–[12], quantization [13]–[25], light-
weight architecture design [26]–[29], low-rank factorization
[30]–[34] and knowledge distillation [35]–[38]. Different from
other model compression methods, model quantization can be
implemented in real-scenario model deployment, with the low-
precision computation supported on general hardware. Briefly,
model quantization paradigm converts the floating-point values
into low-bit integers for model compression [13]. As such, less
memory access will be needed and computation latency will be
reduced in model inference, which make it possible to deploy
large DNN model on edge devices for real-time applications.

Due to the limited representation ability over low-bit values,
model quantization usually involves noise, which potentially
results in the performance degradation in reality. To recover the
quantized model performance, Quantization Aware Training
(QAT) performs backward propagation to retrain the quantized
model [15]–[18]. However, QAT is usually time-consuming
and hard to implement, so Post Training Quantization (PTQ),
as an alternative method, aims at adjusting the weights of
quantized model without training [14], [22], [23]. Note that
QAT and PTQ need the original training data for quantization,
whereas training data may be prohibited severely from access
due to privacy or proprietary rules in real scenario, e.g., user
data, military information, or medical images. As a result, real-
world applications of QAT and PTQ may be restricted.

Recently, Data-Free Quantization (DFQ) have came into be-
ing as a more promising method for the practical applications
without access to any training data, which aims at restoring the
performance of quantized model by generating synthesis data,
similar to the data-free knowledge distillation [37]. Current
DFQ methods can be roughly divided into two categories,
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Fig. 2. Overview of the proposed ClusterQ scheme. Based on the Conditional Generative Adversarial Network (CGAN) [40] mechanism, we perform clustering
and alignment on the batch normalization statistics of semantic features to obtain high inter-class separability.

i.e., without fine-tuning and with fine-tuning. Pioneer work
on DFQ without fine-tuning, like ZeroQ [19], generate the
calibration data that matches the batch normalization (BN)
statistics of model to clip the range of activation values. How-
ever, compressed models by this way often have significant
reduction in accuracy when quantizing to lower precision. In
contrast, DFQ with fine-tuning applies generator to produce
synthetic data and adjusts the parameters of quantized model
to retain higher performance. For example, GDFQ [21] learns
a classification boundary and generates data with a Conditional
Generative Adversarial Network (CGAN) mechanism [40].

Although recent studies have witnessed lots of efforts on
the topic of DFQ, the obtained improvements are still limited
compared with PTQ, due to the existed gap between the
synthetic data and real-world data. As such, how to make the
generated synthetic data closer to the real-world data for fine-
tuning will be a crucial issue to be solved. To close the gap,
we explore the pre-trained model information at a fine-grained
level. According to [41], [42], during the DNN model inferring
on real data, the distributions of semantic features can be clus-
tered for classification, i.e., inter-class separability property
of semantic features. This property has also widely used in
domain adaption to align the distributions of different domains.
However, synthetic data generated by current DFQ methods
(such as ZeroQ [19]) cannot produce semantic features with
high inter-class separability in the quantized model, as shown
in Figure 1. Based on this phenomenon, we can hypothesize
that high inter-class separability will reduce the gap between
synthetic data and real-world data. Note that this property

has also been explored by FDDA [22], which augments the
calibration dataset of real data for PTQ. However, there still
does not exist data-free quantization method that imitates the
real data distribution with inter-class separability.

From this perspective, we will propose effective strategies
to generate synthetic data to obtain features with high inter-
class separability and maintain the generalization performance
of the quantized model for data-free case. In summary, the
major contributions of this paper are described as follows:

1) Technically, we propose a new and effective data-free
quantization scheme, termed ClusterQ, via feature dis-
tribution clustering and alignment, as shown in Figure 2.
As can be seen, ClusterQ formulates the DFQ problem
as a data-free domain adaption task to imitate the dis-
tribution of original data. To the best of our knowledge,
ClusterQ is the first DFQ scheme to utilize feature
distribution alignment with clusters.

2) This study also reveals that high inter-class separability
of the semantic features is critical for synthetic data gen-
eration, which impacts the quantized model performance
directly. We quantize and fine-tune the DNN model
with a novel synthetic data generation approach without
any access to original data. To achieve high inter-class
separability, we propose a Semantic Feature Distribution
Alignment (SFDA) method, which can cluster and align
the feature distribution into the centroids for close-to-
reality data generation. For further performance im-
provement, we introduce the intra-class variance [43] to
enhance data diversity and exponential moving average
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(EMA) to update the cluster centroids.
3) Based on the clustered and aligned semantic feature

distributions, our ClusterQ can effectively alleviate the
performance degradation, and obtain state-of-the-art re-
sults on a variety of popular deep models.

The rest of this paper is organized as follows. In Section
II, we review the related work. The details of our method
are elaborated in Section III. In Section IV and V, we
present experiment results and analysis. The conclusion and
perspective on future work are finally discussed in Section VI.

II. RELATED WORK

We briefly review the low-bit quantization methods that are
close to our study. More details can be referred to [44] that
provides a comprehensive overview for model quantization.

A. Quantization Aware Training (QAT)

To avoid performance degradation of the quantized model,
QAT is firstly proposed to retrain the quantized model [15]–
[18]. With full training dataset, QAT performs floating-point
forward and backward propagations on DNN models and
quantizes them into low-bit after each training epoch. Thus,
QAT can quantize model into extremely low precision while
retaining the performance. In particular, PACT [15] optimizes
the clipping ranges of activations during model retraining.
LSQ [17] learns step size as a model parameter and MPQ [18]
exploits retraining-based mix-precision quantization. However,
high computational complexity of QAT will lead to restrictions
on the implementation in reality.

B. Post Training Quantization (PTQ)

PTQ is proposed for efficient quantization [14], [22], [23].
Requiring for a small amount of training data and less
computation, PTQ methods have ability to quantize models
into low-bit precision with little performance degradation. In
particular, [14] propose a clipping range optimization method
with bias-correction and channel-wise bit-allocation for 4-bit
quantization. [23] explore the interactions between layers and
propose layer-wise 4-bit quantization. [22] explore calibration
dataset with synthetic data for PTQ. However, above methods
require more or less original training data, and they are
inapplicable for the cases without access to original data.

C. Data-Free Quantization (DFQ)

For the case without original data, recent studies made great
efforts on DFQ to generate the close-to-reality data for model
fine-tuning or calibration [19]–[21], [24], [25]. Current DFQ
methods can be roughly divided into two categories, i.e., with-
out fine-tuning and with fine-tuning. Pioneer work on DFQ
without fine-tuning, like ZeroQ [19], generate the calibration
data that matches the batch normalization (BN) statistics. DSG
[25] discovers homogenization of synthetic data and enhances
the diversity of generated data. However, these methods lead
to significant reduction in accuracy when quantizing to lower
precision. In contrast, DFQ with fine-tuning applies generator

to produce synthetic data and adjusts the parameters of quan-
tized model to retain higher performance. For example, GDFQ
[21] employs a Conditional Generative Adversarial Network
(CGAN) [40] mechanism and generates dataset for fine-tuning.
AutoReCon [24] enhances the generator architecture by neural
architecture search. Qimera [20] exploits boundary supporting
samples to enhance the classification boundary, whereas it
tends to lead to mode collapse and reduce the generalization
ability of quantized model.

III. CLUSTERQ: SEMANTIC FEATURE DISTRIBUTION
ALIGNMENT FOR DFQ

For easy implementation on hardware, our ClusterQ scheme
employs a symmetric uniform quantization, which maps and
rounds the floating-point values of full-precision model to low-
bit integers. Given a floating-point value x in a tensor x to be
quantized, it can be defined as follows:

xq = round(x/∆), ∆ =
2α

2N − 1
, (1)

where xq is the quantized value, N is the quantization bit
width, α denotes the clipping range, ∆ is the scaling factor to
map floating-point value x within clipping range into the range
of [0, 2N−1] and round(·) represents the rounding operation.
For most symmetric uniform quantization, α is defined by the
maximum of absolute values ,i.e, α = max(|x|), so that all
of the values can be represented. Then, we can easily obtain
the dequantized value xd as follows:

xd = xq ·∆ . (2)

Due to the poor representation ability of limited bit width,
there exists quantization error between the dequantized value
xd and the original floating-point value x, which may involve
quantization noise and lead to accuracy loss.

To recover the quantized model performance, there exist
two challenges for DFQ methods: (1) For statistic activation
quantization, clipping range of activation values should be
determined without access to the training data. (2) To recover
the degraded performance, fine-tuning is used to adjust the
weights of quantized models without training data. To solve
these challenges, current DFQ methods try to generate syn-
thetic data which are similar to the original training data. For
example, GDFQ [21] employs a CGAN-based mechanism for
fake samples generation. Given a fixed original full-precision
model MFP as the discriminator, a generator G is trained to
produce synthetic data that are close to the original training
data. More details can be referred to [21].

However, without clustering and alignment of the semantic
feature distributions, generated synthetic data used for fine-
tuning the quantized model will lead to limited performance
recovery. According to [41], traits of data domain are con-
tained in the semantic feature distributions. The knowledge of
the full-precision pre-trained model can be further used for
synthetic data generation by clustering the semantic feature
distributions. From our perspective, this will be the most crit-
ical factor for the performance recovery of quantized model.

To utilize the distribution of semantic features, we further
exploit the Batch Normalization (BN) statistics [45] to imitate
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Fig. 3. t-SNE visualization results of the deep layer features in ResNet-20 model inferring on CIFAR-10. From (a) to (f) correspond to the features from
14th layer to 19th layer. The inter-class separability is enhanced as the layer gets deeper.

the original distribution. Next, we briefly review the BN layer
in DNN models, which is designed to alleviate the internal
covariate shifting. Formally, with a mini-batch input XB =
{x1,x2, ...,xm} of batch size m, the BN layer will transfer
the input XB into the following expression:

x̂i ←−
xi − E[XB ]√
V ar[XB ] + ε

,

yi ←− γix̂i + βi,

(3)

where xi and yi denote the input and output of BN layer
respectively, γi and βi denote the parameters learned during
training. After training, the distribution of input in each layer
will be stable across training data.

A. Proposed Framework

The overview of our proposed ClusterQ is presented in Fig-
ure 2, which is based on the CGAN mechanism. Specifically,
ClusterQ employs the fixed full-precision model MFP as a
discriminator. The generator G is trained by the loss L2(G)
to produce fake data to fine-tune the quantized model MQ by
computing the loss L3(MQ).

The loss L2(G) contains L1(G) for classification and global
distribution information matching. More importantly, L2(G)
introduces the LGSFDA(G) for distribution clustering and align-
ment to achieve inter-class separability in semantic layer. Thus,
the synthetic data can imitate the distributions of real data in
feature level of pre-trained model. To adapt the distribution
change during generator training, we implement the dynamic
centroid update by EMA. Moreover, to avoid mode collapse,

we still introduce the intra-class variance loss LGICV (G) to
improve the diversity of synthetic data.

To highlight our motivation on the inter-class separability
of semantic features, we conduct some pilot experiments on
the DNN features to observe the dynamic transformation of
this separability over different layers, as illustrated in Figure 3.
As the layer getting deeper, the feature distributions are more
separable and can be easily clustered or grouped. Specifically,
we can easily distinguish the features of the 18th and 19th
layers (see Figure 3(e) and 3(f)), while the boundaries of
clusters become blurred in the 16th and 17th layers (see Figure
3(c) and 3(d)). For more shallow layers (see Figure 3(a) and
3(b)), almost no boundary exists.

Based on high inter-class separability of semantic features,
and we can model the semantic feature distribution as a Gaus-
sian distribution [14]. That is, the semantic feature statistics for
different classes will also be clustered into groups. As such,
we directly utilize the Batch Normalization statistics that save
running statistics for feature clustering and alignment.

The structure of SFDA is shown in Figure 4. In the fine-
tuning process of quantized model, the running BN statistics
corresponding to the given pseudo labels are extracted and
aligned to the centroids in each layer. The distance between
running statistics and centroids is computed to update the
generator G. The SFDA process is elaborated below.

1) First, after the generator G warms up, with a given pre-
trained full-precision model, we initialize the centroids
for each class in each semantic layer. Note that the
warm-up process is prerequisite for the centroids ini-
tialization to generate the synthetic data with diversity.
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To initialize the centroids, we pass the pseudo label of
each class to the generator, infer full-precision model
on the synthetic data and extract the corresponding BN
statistics in each semantic layer.

2) Then, we formulate the problem as a domain adaption
task, and treat the centroids and running BN statistics as
target distribution and source distribution. As such, we
perform distribution alignment in each semantic layer.
The Euclidean distance between running BN statistics
and centroids can be calculated by the following SFDA
loss function LGSFDA(G) to align them:

LGSFDA(G) =

NC∑
C=0

L∑
l=lst

∥∥µ̂Cl − µCl ∥∥22 +
∥∥σ̂Cl − σCl ∥∥22,

(4)
where µ̂Cl and σ̂Cl are mean and standard deviation for
class C at the lth layer in the full-precision model com-
puted in the process of generator training, µCl and σCl
represent the corresponding mean and standard deviation
of the centroids, respectively. lst denotes the starting
layer that contains semantic features. And NC denotes
the number of classes. To avoid imbalance among cat-
egories caused by the random labels, we traverse all
categories by employing the pseudo labels, and compute
the SFDA loss LGSFDA(G) independently.

Specifically, according to our experiment results, the SFDA
process can significantly promote the generator to produce
synthetic data with high inter-class separability of semantic
features. During the fine-tuning process, the learned classi-

fication boundary will be further enhanced. In addition, to
avoid misclassification caused by the pre-trained model, or
the gap between synthetic data and real data, we discard the
BN statistics obtained by misclassified synthetic data during
the generator training process.

B. Centroids Updating

The initialization of centroids may be unstable for SFDA.
First, the initialization of centroids is based on the assumption
that the semantic feature distributions obtained by synthetic
data and real data are close. However, due to the intrinsic
limitation of generator, even if the generator G has been
warming up, there still remains a gap to the real data which
may lead to centroids mismatch and limit further distribution
alignment. Specifically, the inter-class separability may be
more obvious along with further generator training, and the
original centroids will be no longer appropriate to the situation.

For these reasons, we need to update the centroids during
generator training to release the negative effects. Thus, we
update the centroids by the running BN statistics during gen-
erator training. Considering the SFDA method as a clustering
method, we apply exponential moving average (EMA) directly
on it to update the centroids as follows:{

µCl = (1− βSFDA)µCl + βSFDAµ̂
C
l

σCl = (1− βSFDA)σCl + βSFDAσ̂
C
l

, (5)

where µ̂Cl and σ̂Cl denote the running mean and standard
deviation corresponding to class C, respectively. βSFDA is the
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Fig. 5. The effect of Intra-Class Variance. With introduction of intra-class variance loss LICV , the BN statistic distribution is allowed to shift around the
centroids and follow Gaussian distribution. As result, the mode collapse is mitigated in data generation.

decay rate of EMA, which trades off the importance of pre-
vious and current BN statistics. Thus, BN centroids can make
the SFDA process a grouping method with decentralization
property. We will provide experimental results to demonstrate
the performance promotion via centroids updating.

C. Intra-Class Variance

Although our proposed ClusterQ can obtain high inter-class
separability of semantic features, the distribution alignment
may also cause vulnerability of mode collapse which will also
degrade the generalization performance of quantized model.
That is, the distribution of real data cannot be covered by
the synthetic data. For example, given Gaussian input, some
generators produce data in fixed mode.

To expand mode coverage, we employ a simple method
following [22] to shift the BN statistic distribution around the
cluster. Specifically, due to the semantic feature distribution
approximately following Gaussian distribution, we introduce
Gaussian noise to increase the intra-class discrepancy within
clusters and define the intra-class variance loss LICV as

LICV (G) =

NC∑
C=0

L∑
l=lst

∥∥µ̂Cl −N (µCl , λµ)
∥∥2
2

+
∥∥σ̂Cl −N (σCl , λσ)

∥∥2
2
,

(6)

where N (·, ·) denotes Gaussian noise, λµ and λσ denote the
distortion levels to control intra-class variance. In this way, we

can allow the running mean µ̂Cl and standard deviation σ̂Cl for
each class C to shift within a dynamic range around the cluster
centroids µCl and σCl respectively. As shown in Figure 5,
semantic feature distribution space cannot be covered without
intra-class variance, therefore generated data will encounter
mode collapse and lead to poor performance. In contrast,
diversity images can be produced with introduction of intra-
class variance loss LICV . Experiments have verified the effect
of intra-class variance loss LICV to mitigate the mode collapse
in synthetic data generation.

D. Training Process

For better understanding of our quantization scheme, we
summarize the whole training process in Algorithm 1. With the
low-bit model MQ quantized by Eq.(1) and the full-precision
model MFP as discriminator, our ClusterQ scheme trains
the generator G to produce synthetic data and updates the
parameters of the quantized model MQ alternately. Note that
our implementation is based on the framework of GDFQ [21].

At the beginning of the generator G training, i.e., warm-up
process, we fix the weights and BN statistics of quantized
model MQ to avoid being updated, because the generated
synthetic data lack of diversity and textures. The loss function
L1(G) is denoted as follows:

L1(G) = LGCE(G) + α1L
G
BNS(G), (7)
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where α1 is a trade-off parameter. The term LGCE(G) utilizes
cross-entropy loss function CE(·, ·) with given Gaussian noise
z and pseudo labels y to update the generator G:

LGCE(G) = Ez∼y[CE(MFP (G(z|y)), y)]. (8)

And the term LGBNS(G) denotes the loss to match BN
statistics in each layer, denoted as follows:

LGBNS(G) =

L∑
l=1

∥∥µ̂l − µl∥∥22 +
∥∥σ̂l − σl∥∥22, (9)

where µ̂l and σ̂l are the running mean and standard deviation
in the lth layer, while µl and σl are original mean and standard
deviation stored in BN layer at the lth layer of full-precision
model MFP . Note that LGBNS(G) is totally different from the
SFDA loss LGSFDA(G), even if they look somewhat similar.

After finishing the warm-up process, we utilize the synthetic
data to fine-tune the quantized model, and initialize the BN
statistic centroids. Then, the SFDA loss LGSFDA(G) and the
intra-class variance loss LGICV (G) will be added into the loss
function L2(G) for generator training, formulated as

L2(G) = LGCE(G) + α1L
G
BNS(G)

+ α2L
G
SFDA(G) + α3L

G
ICV (G),

(10)

where α2 and α3 is trade-off parameters. After that, the
centroids will be updated by EMA.

To fine-tune the quantized model MQ, we use the following
loss function L3(MQ):

L3(MQ) = LQCE(MQ) + γLQKD(MQ), (11)

where γ is a trade-off parameter. With the synthetic data and
corresponding pseudo label y, term LQCE(MQ) utilizes the
cross-entropy loss function CE(·, ·) to update the parameters
of quantized model as follows:

LQCE(MQ) = Ex̂∼y[CE(MQ(x̂), y)]. (12)

And the knowledge distillation loss function LQKD(MQ) via
Kullback-Leibler divergence loss KLD(·, ·) is employed to
compare the outputs of quantized model MQ and full-precision
model MFP , which is formulated as follows:

LQKD(MQ) = Ex̂[KLD(MQ(x̂),MFP (x̂))]. (13)

Note the parameters of full-precision model MFP are fixed
during the whole training process to avoid modification.

IV. EXPERIMENTS

A. Experimental Setting

We compare each method on several popular datasets, in-
cluding CIFAR10, CIFAR100 [39] and ImageNet (ILSVRC12)
[46]. With 60 thousand images of pixels 32×32, CIFAR10 and
CIFAR100 datasets contain 10 categories for classification.
ImageNet has 1000 categories for classification with 1.2 mil-
lion training images and 150 thousand images for validation.

For experiments, we perform quantization on ResNet-18
[2], MobileNet-V2 [26] on ImageNet, and also ResNet-20 on
CIFAR10 and CIFAR100. All experiments are conducted on
an NVIDIA RTX 2080Ti GPU with PyTorch [47]. Note that

Algorithm 1 ClusterQ Training
Input: Generator G with random initialization, pre-trained
full-precision model MFP .
Parameter: Number of training epoch N , number of warm-up
epoch Nw and number of fine-tuning step Nft
Output: Trained generator G and quantized model MQ.

1: Quantize MFP and obtain the quantized model MQ.
2: Fix BN statistics of quantized model MQ.
3: for epoch ← 1 to N do
4: if epoch < Nw then
5: Train generator G with L1(G) in Eq.(7).
6: else
7: if epoch = Nw then
8: Initialize the centroids.
9: else

10: for step ← 1 to Nft do
11: Generate synthetic data with Gaussian noise z

and pseudo labels y.
12: Train generator G with L2(G) in Eq.(10).
13: Update the centroids with EMA in Eq.(5).
14: Fine-tune MQ with L3(Q) in Eq.(11).
15: end for
16: end if
17: end if
18: end for

all of the pre-trained model implementations and weights are
provided by Pytorchcv1.

For implementation, we follow some hyperparameter set-
tings of GDFQ [21]. The number of training epoch is set to
400 and the number of fine-tuning epoch is set to 200. We
set 50 epochs for the warm-up process and the rest epochs to
update generator G and quantized model MQ alternately. For
the trade-off parameters in Eqs.(10) and (10), we set 0.1 for
α1, 0.9 for α2, 0.6 for α3 and 1.0 for γ. For EMA, we set
the decay rate βSFDA to 0.2. In LICV , the distortion levels of
Gaussian noise λµ and λσ are set to 0.5 and 1.0, respectively.
For the sake of implementation on hardware, we choose the
fixed precision quantization for experiments.

B. Comparison Results

To demonstrate the performance of our ClusterQ, we com-
pare it with several closely-related methods, i.e., ZeroQ [19],
GDFQ [21], Qimera [20], DSG [25] and AutoReCon [24].
The comparison results based on ImageNet, CIFAR100 and
CIFAR10 are described in Tables I, II and III, respectively.
Note that WnAm stands for the quantization bit-width with
n-bit weight and m-bit activation. The baseline with W32A32
denotes the full-precision model accuracy. The character †

means that the result is obtained by ourselves. By consid-
ering the practical applications, we also conduct quantization
experiments with different precision settings. Moreover, we
choose the bit number with power of two in all experiments
for facilitating the deployment.

1Computer vision models on PyTorch: https://pypi.org/project/pytorchcv/

https://pypi.org/project/pytorchcv/
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TABLE I
COMPARISON RESULT OF EACH METHOD ON IMAGENET DATASET.

DNN Model Precision Quantization Method Top1 Accuracy

ResNet-18

W32A32 Baseline 71.470%

W4A4

ZeroQ 20.770%
GDFQ 60.704%
DSG 34.530%

Qimera 63.840%
AutoReCon 61.600%

Ours 64.390%

W4A8

ZeroQ† 51.176%
GDFQ† 64.810%
Qimera† 65.784%

Ours 67.826%

W8A8
GDFQ† 70.788%
Qimera† 70.664%

Ours 70.838%

MobileNet-V2

W32A32 Baseline 73.084%

W4A4

ZeroQ 10.990%
GDFQ 59.404%
Qimera 61.620%

AutoReCon 60.020%
Ours 63.328%

W4A8

ZeroQ† 13.955%
GDFQ† 64.402%
Qimera† 66.486%

Ours 68.200%

W8A8
GDFQ† 72.814%
Qimera† 72.772%

Ours 72.82%

TABLE II
COMPARISON RESULTS ON CIFAR100 DATASET.

DNN Model Precision Quantization Method Top1 Accuracy

ResNet-20

W32A32 Baseline 70.33%

W4A4

ZeroQ 45.20%
GDFQ 63.91%
Qimera 65.10%
Ours 67.09%

W4A8

ZeroQ† 58.606%
GDFQ† 67.33%
Qimera† 68.89%

Ours 69.68%

W8A8

ZeroQ† 70.128%
GDFQ† 70.39%
Qimera† 70.40%

Ours 70.43%

1) Results on ImageNet: As can be seen in Table I, with the
same precision setting based on the ResNet-18 and MobileNet-
V2, our method performs better than its competitors. Specif-
ically, our method performs beyond the most closely-related
GDFQ method a lot, especially for the case of lower precision.
By comparing with the current state-of-the-art method Qimera,
our method still outperforms it 1.708% for MobileNet-V2 that
is, in fact, more difficult to be compressed due to smaller
weights. One can also note that, with the reduction of precision
bits, the presentation ability of the quantized value becomes
limited and leads to more performance degradation. In this
case, our ClusterQ retains the performance of quantized model
better than other compared competitors.

TABLE III
COMPARISON RESULTS ON CIFAR10 DATASET.

DNN Model Precision Quantization Method Top1 Accuracy

ResNet-20

W32A32 Baseline 93.89%

W4A4

ZeroQ 73.53%
GDFQ 86.23%
Qimera 91.23%
Ours 92.06%

W4A8

ZeroQ† 90.845%
GDFQ† 93.74%
Qimera† 93.63%

Ours 93.84%

W8A8

ZeroQ† 93.94%
GDFQ† 93.98%
Qimera† 93.93%
Ours† 94.07%

Original ZeroQ GDFQ Ours

Airplane

Auto-

mobile

Cat

Deer

Dog

Frog

Horse

Ship

Truck

Bird

Qimera

Fig. 6. Synthetic data generated by the pre-trained ResNet-20 model on
CIFAR10 dataset. Each row denotes different classes, except for ZeroQ, since
it generates data without labels.

2) Results on CIFAR10 and CIFAR100: From the results in
Tables II and III based on ResNet-20, similar conclusions can
be obtained. That is, our method surpasses the current state-of-
the-art methods in terms of accuracy loss in this investigated
case. In other words, the generalization performance of our
method on different models and datasets can be verified.

C. Visual Analysis

In addition to the above numerical results, we also would
like to perform the visual analysis on the generated synthetic
data, which will directly impact the performance recovery of
each quantized model. In Figure 6, we visualize the synthetic
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OursQimeraGDFQOriginal Ours

(w/o LICV)

Fig. 7. Randomly selected synthetic data (label=”ship”) with the pre-trained
ResNet-20 model on CIFAR10 dataset. Note that “w/o LICV ” denotes the
results from ClusterQ without intra-class variance loss LICV .

TABLE IV
ABLATION STUDY RESULTS OF RESNET-18 ON THE IMAGENET DATASET

WITH THE PRECISION OF W4A4.

Model LICV EMA Top1

ResNet-18

√ √
64.390%√

- 63.646%
-

√
63.590%

- - 63.068%

data with labels generated by existing methods (i.e., ZeroQ,
GDFQ and Qimera) based on the ResNet-20 over CIFAR10.
We select the synthetic data with label ”ship” as an example
and show the results in Figure 7.

As shown in Figure 6, due to lack of label information, the
data generated by ZeroQ have less class-wise discrepancy. For
GDFQ, the generated data can be distinguished into different
classes, but containing less detailed textures. Based on the
SFDA, our ClusterQ can produce the synthetic data with more
useful information. With abundant color and texture, the data
generated by Qimera are similar to that of ours. However, as
shown in Figure.7, the little variance of the images within each
class indicates that they encounter class-wise mode collapse .
In contrast, by simultaneously considering the contribution of
intra-class variance, the generated synthetic data of the same
class by ClusterQ can maintain variety on color, texture and
structure. To illustrate the effect of intra-class variance, in Fig-
ure.7 we also visual the synthetic data produced by ClusterQ
without LICV which lead to class-wise mode collapse.

D. Ablation Studies

We first evaluate the effectiveness of each component in
our ClusterQ, i.e., intra-class variance and EMA. We conduct
experiments to quantize the ResNet-18 into W4A4 on Ima-
geNet dataset, and describe the results in Table IV. We see
that without the intra-class variance or EMA, the performance
improvement of quantized model is limited. That is, both intra-
class variance or EMA are important for our method.

Then, we also analyze the sensitivity of our method to the
decay rate βSFDA in Figure 8. According to III-B, we set the
decay rate βSFDA to control the centroid updating and trade It
is clear that the quantized model achieves the best result, when
βSFDA equals to 0.2. The performance is reduced when the
decay rate is lower than 0.2, since in such cases the centroids
cannot adapt to the distribution changing. Moreover, if βSFDA
is increased beyond 0.2, the centroids will fluctuate. The above
situations lead to performance degradation.

In addition, to explore the effect of the trade-off param-
eter α3, we conduct a series of experiments with different
settings of α3. As shown in Figure 9, when α3 goes up
to 0.6, the performance of quantized model will increase. It
demonstrates that intra-class variance can improve the quality
of synthetic data and lead to performance promotion. However,
the performance of quantized model falls down, when α3 goes
above 0.6. Higher trade-off hyperparameter α3 will enhance
the effect of LICV and broke the classification boundary.
In summary, we should set α3 with consideration of model
representation ability and the distribution of original dataset.

V. DISCUSSION

A. On Prior Information

It may be easy to misunderstand that our proposed ClusterQ
method depends on the prior information that are provided by
the pseudo labels. As such, we want to clarify the classification
labels are presented as one-hot vectors and described by the
class indices during the whole quantization process. Thus, the
only thing our framework needs is the number of classes rather
than specific classes. In fact, the number of classes can be
obtained by the dimension of the weights in the last layer,
even if we have no idea about the class information of dataset.
Then, we can create the pseudo labels with class indices and
compute the loss function with the output.

B. About Privacy and Secrecy

Prohibition of access to the original data is one of the most
important motivations for DFQ methods. Someone may worry
the generator-based mechanism or by synthetic data generation
will violate the privacy. However, in fact, due to the black
box computing manner of deep learning and the limitation of
current intelligent technologies, the synthetic images generated
by our method still cannot be interpreted by human beings, as
shown in Figures 6 and 7.

C. Limitations of our ClusterQ

The proposed scheme utilizes the property of class-wise
separability of feature distribution and performs class-wise
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Fig. 8. Sensitivity analysis of the decay rate of EMA for centroid updating. We conduct the experiments by quantizing ResNet-18 on ImageNet dataset. The
quantized model performs the best at the point of βSFDA = 0.2.
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Fig. 9. Sensitivity analysis of the α3 for intra-class variance. We conduct the experiments by quantizing ResNet-18 on ImageNet dataset. As α3 goes up to
0.6, performance of quantized model will increase. But the performance of quantized model falls down while α3 goes above 0.6.

statistic alignment by CGAN-like mechanism to improve the
diversity of synthetic data. However, compared with those
methods without fine-tuning, such as ZeroQ, generator-based
methods always require for time and computation resources to
train the generator. What’s more, for different computer vision
tasks, we have to design new generator with the embedding
capability of the corresponding label format. For deep models
without BN layer, e.g., ZeroDCE [48], generative DFQ method
can not distill the statistics directly from pre-trained model.

VI. CONCLUSION

We have investigated the problem of alleviating the perfor-
mance degradation when quantizing a model, by enhancing
the inter-class separability of semantic features. Technically,
a new and effective data-free quantization method referred
to as ClusterQ is proposed. The setting of ClusterQ presents
a new semantic feature distribution alignment for synthetic
data generation, which can obtain high class-wise separability
and enhance the diversity of the generated synthetic data. To
further improve the feature distribution and the performance of
data-free quantization, we also incorporate the ideas of intra-
class variance and exponential moving average, so that the
feature distributions are more accurate. Extensive experiments
based on different DNN models and datasets demonstrate that
our method can achieve state-of-the-art performance among
current data-free quantization methods, especially for smaller
network architectures. In future work, we will focus on ex-
ploring how to extend our ClusterQ to other vision tasks. The

deployment of our proposed data-free quantization method
into edge devices will also be investigated.
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