
Dictionary Pair-based Data-Free Fast Deep Neural
Network Compression

Yangcheng Gao1,2, Zhao Zhang1,2,∗, Haijun Zhang3, Mingbo Zhao4, Yi Yang5, and Meng Wang1,2

1School of Computer Science and Information Engineering, Hefei University of Technology, Hefei 230009, China
2Key Laboratory of Knowledge Engineering with Big Data (Ministry of Education) & Intelligent Interconnected Systems

Laboratory of Anhui Province, Hefei University of Technology, Hefei 230009, China
3Department of Computer Science, Harbin Institute of Technology (Shenzhen), Xili University Town, Shenzhen, China

4Department of Electrical Engineering, City University of Hong Kong, Hong Kong SAR
5Centre for Artificial Intelligence, University of Technology Sydney, Sydney, NSW 2007, Australia

∗Corresponding author E-mail: cszzhang@gmail.com

Abstract—Deep neural network (DNN) compression can reduce
the memory footprint of deep networks effectively, so that the
deep model can be deployed on the portable devices. However,
most of the existing model compression methods cost lots of time,
e.g., vector quantization or pruning, which makes them inept to
the real-world applications that need fast online computation.
In this paper, we therefore explore how to accelerate the model
compression process by reducing the computation cost. Then,
we propose a new deep model compression method, termed
Dictionary Pair-based Data-Free Fast DNN Compression, which
aims at reducing the memory consumption of DNNs without
extra training and can greatly improve the compression efficiency.
Specifically, our proposed method performs tensor decomposition
on the DNN model with a fast dictionary pair learning-based
reconstruction approach, which can be deployed on different
layers (e.g., convolution and fully-connection layers). Given a pre-
trained DNN model, we first divide the parameters (i.e., weights)
of each layer into a series of partitions for dictionary pair-
based fast reconstruction, which can potentially discover more
fine-grained information and provide the possibility for parallel
model compression. Then, dictionaries of less memory occupation
are learned to reconstruct the weights. Extensive experiments on
popular DNNs (i.e., VGG-16, ResNet-18 and ResNet-50) showed
that our proposed weight compression method can significantly
reduce the memory footprint and speed up the compression
process, with less performance loss.

Index Terms—Model compression efficiency, dictionary pair-
based fast compression of DNNs, fast weight reconstruction, less
performance loss.

I. INTRODUCTION

Deep Neural Networks (DNNs)-based models have obtained

state-of-the-art performance for a variety of computer vision

and image processing applications, due to strong representa-

tion ability. However, in practice DNNs usually rely on the

development of GPU with high computation capability, since

there are millions or even billions of parameters in a DNN

model. For example, VGG-16 [1] has a total of 138 million

trainable parameters, and it takes two to three weeks to train

the VGG model on ImageNet dataset [2] with an Nvidia Titan

GPU machine. Thus, due to the large model size and high

computational complexity, it is still very challenging to deploy

the DNN models on portable devices with limited memory,

Other Layers Other Layers

Layer
Inputs

Decompose
Original

Weight Tensor Decomposed
Tensors

Original Model Compressed Model

Fig. 1. Tensor decomposition (TD) principle.

energy and computation ability for the specific tasks, such as

image classification, object detection and image restoration.

To reduce the computational complexity of the deep model

and ensure the performance at the same time, researchers

have been investigating on the methods of DNN compression,

such as vector quantization (VQ) [6], pruning [17] and tensor

decomposition (TD) [5]. Specifically, VQ performs similarly

as a clustering method like k-means on the weights to group

the filters in DNNs. Pruning produces the sparsity in DNNs to

reduce the computation and memory access. According to [5],

there exists inherent redundancy within DNNs, so that deep

model can be compressed through TD. As such, some effective

tensor decomposition-based methods have been proposed for

DNN compression, such as Singular value decomposition

(SVD) [13], QR decomposition [22], CUR [23], Tucker [15],

canonical polyadic decomposition (CPD) [10], Tensor Train

[24] and Filter Learning [3].

However, existing model compression methods usually did

not pay attention to reducing the computational complexity

so that the compression process can be speeded up. For

example, most existing TD-based methods, especially for the

low-rank approximation (LRA) methods [5], need expensive

computational process, since the numerous filters in DNNs

121

2021 IEEE International Conference on Data Mining (ICDM)

978-1-6654-2398-4/21/$31.00 ©2021 IEEE
DOI 10.1109/ICDM51629.2021.00022

20
21

 IE
EE

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 D

at
a

M
in

in
g

(I
C

D
M

) |
 9

78
-1

-6
65

4-
23

98
-4

/2
1/

$3
1.

00
 ©

20
21

 IE
EE

 |
D

O
I:

10
.1

10
9/

IC
D

M
51

62
9.

20
21

.0
00

22

Authorized licensed use limited to: HEFEI UNIVERSITY OF TECHNOLOGY. Downloaded on September 06,2022 at 13:44:46 UTC from IEEE Xplore. Restrictions apply.

Input
Data

Weight Partitions
Compression Process

Partition

Original Model Compressed Model

Original
Output

Output
after compression

Other Layers Other Layers

Original
Weight
Tensor

Current Layer

Decomposed
Tensors

Dictionary Pair-based TD

Dictionary Pair-based TD

Dictionary Pair-based TDPartition Wn

Partition W2

Partition W1
Synthesis Dictionary D1

P1W1

Synthesis Dictionary D2 P2W2

PnWn
Synthesis Dictionary Dn

Fig. 2. Whole process of our proposed dictionary pair-based data-free fast DNN compression.

and VQ needs plenty of time and computation resources for

clustering. It is also noted that due to the reduced generaliza-

tion ability after compression, conventional DNN compression

methods may need retraining or fine-tuning that takes very

long time on large-scale datasets. Besides, existing model

compression methods may extremely rely on the original

training data. However, in the real-world scenario, original data

may be prohibited to be accessed due to some reasons such as

privacy protection. As such, we believe a promising model

compression method should not only pursue to reduce the

memory footprint, but also pay attention to the real needs for

fast data-free compression with small amount of calculation.

In this paper, we therefore propose a dictionary pair-based

fast data-free DNN compression method. Our method aims

at finding an efficient tensor decomposition formulated as a

dictionary learning problem, without training and with the

performance ensured. The main contributions of this paper

are summarized as follows:

• Technically, a general data-free fast DNN compression

method without training is proposed, which can be de-

ployed on different layers of all existing DNNs. Specifi-

cally, our method can obtain significant storage reduction

of DNNs, reduce the model compression time and save

the computational resources. The whole process of our

dictionary pair-based data-free fast DNN compression is

illustrated in Fig.2. Given a pre-trained DNN model, our

method first divides the parameters in each layer into a

series of partitions and then dictionaries of less memory

occupation are learned by a fast reconstruction method to

approximate and compress the weights.

• A new parameter partition strategy is proposed to divide

the weights of DNNs into partitions. With this partition

strategy, one can decompose the weight tensors in a

more flexible way, since the shape of weight matrix

can be defined to adapt to the dictionary pair-based fast

reconstruction process. Besides, the partition strategy can

also provide the possibility for parallel processing of

model compression.

• A dictionary pair-based fast TD approach is presented,

which can obtain the robust and compact representation

of DNN parameters to improve the performance and

model compression efficiency, without the original data.

Due to the strong representation ability of the dictionary

pair learning-based reconstruction, the tensor decompo-

sition can obtain the dictionaries and representation co-

efficients with less memory footprint to approximate the

weights. As an iterative method with a fast reconstruction

in each iteration, our method can significantly reduce the

model compression time with the performance ensured,

without fine-tuning process.

• Extensive experiments on VGG-16 [1], ResNet-18 [11]

and ResNet-50 demonstrated the superior performance

of our method in terms of compression time and perfor-

mance loss. For example, our method can reduce 81.05 %

parameters of VGG-16 in terms of Top5 accuracy loss of

0.5 % , within 25 seconds; The Top5 accuracy of ResNet-

122

Authorized licensed use limited to: HEFEI UNIVERSITY OF TECHNOLOGY. Downloaded on September 06,2022 at 13:44:46 UTC from IEEE Xplore. Restrictions apply.

18 reaches 88.398 % after our compression within 15

seconds. With a 53.90 % reduction of the model size after

the compression within 22.1 seconds, ResNet-50 can also

obtain 92.62 % Top5 accuracy.

The rest of this paper is organized as follows. Section

II briefly introduces the related work on model compres-

sion. In Section III, we present the proposed dictionary-

based fast DNN compression method. Section IV evaluates

the performance our method in terms of compression time

and effectiveness on the related tasks. Finally, the concluding

remarks are provided in Section V.

II. RELATED WORK

Model compression plays an important role for the devel-

opment and applications of DNNs, and many kinds of model

compression methods have been proposed for DNNs, such as

vector quantization, pruning and tensor decomposition.

A. Vector Quantization (VQ)

VQ [6] performs the model compression similarly as a clus-

tering approach like k-means to group the filters in DNNs so

that the filters can be represented as centroids and codebook.

VQ can naturally exploit the redundancies among groups of

net-work parameters to achieve dramatic compression. For ex-

ample, an AGB algorithm [6] was proposed for clustering the

output activations of ResNet-50 to achieve 20× compression.

However, VQ needs much time to learn the codebook and fine-

tune the centroids. According to [6], quantizing a ResNet-50

with their AGB method will take about one day on a 16 GB

Volta V100 GPU.

B. Pruning

Pruning-based methods produce sparsity in DNNs [25] to

reduce the calculation and storage by removing the unimpor-

tant components at different levels, e.g., filters [20], connec-

tions [7], channels [8] and layers [9]. Note that the drawback

of weight and connection pruning is that they both can

only produce the sparsity in DNNs, instead of achieving real

reduction of memory footprint. As for the channel and layer

pruning, they cannot avoid high accuracy loss after model

pruning. Besides, pruning methods usually takes long time for

model retraining and needs original data.

C. Tensor Decomposition (TD)

TD can decompose the weight tensor of each layer in DNNs

into smaller tensors to approximate the original one, so that it

can reduce the storage and computational cost. For example,

a convolutional filter was proposed as a linear combination of

separable 1D filters by dictionary learning [3]; Nonlinear least

squares was used to compute the CPD of convolutional filters

in DNN [10]; Redundancy of convolutional layer is exploited

by SVD-based methods [5], which convert the filter into 3

tensors. However, most of the TD methods will consume large

amount computational resources and time.

For the consideration of efficiency, some fast TD-based

methods have also been proposed for DNN compression. For

TABLE I
IMPORTANT NOTATIONS USED IN THE PAPER

Notation Description
W Uncompressed weight tensor
wi The i-th output channel of W
Wi The i-th weight partition of W
˜W Approximation to W
X Input of layer
Xi The i-th Input partition corresponding to Wi

Y Input of layer
{D,P } Dictionary pair

D Synthesis dictionary
Di The i-th dictionary corresponding to Wi

di The i-th dictionary word of D
P Analysis dictionary
Pi The i-th analysis dictionary corresponding to Wi

S Coefficient matrix of the dictionary-based method
si The i-th coefficient vector of S
σ(·) Activation function of layer
B The batch size of input X
Cin Size of input channel
Cout Size of output channel
s Size of weight partition Pi

k Kernel size of layer
N Number of dictionary words

example, the approach in [13] found the exact global opti-

mizer of the low-rank decomposition and achieved significant

speedup and storage reduction. Another TD-based method

based on truncated SVD, named ENC [12], provided a com-

promise between accuracy and computational complexity, and

obtained the optimal rank configuration for kernel decompo-

sition in a short time. However, both of them still require

original data for parameter fine-tuning or training from scratch,

there-fore they still cannot offer a global model compression

speedup on large-scale datasets.

III. DICTIONARY PAIR-BASED DATA-FREE FAST DNN

COMPRESSION

In this section, we describe the dictionary pair-based data-

free fast DNN compression method in detail.

A. Notation

For clear presentation of our method, we first introduce the

important notations used in the paper in Table I.

B. Whole Framework

We first introduce the whole process of our proposed fast

DNN compression. In our method, we formulate the tensor

decomposition as an optimization problem and represent the

original weight tensors using a series of linear combinations

learned by a dictionary pair learning-based fast reconstruction

process. Specifically, for a given pre-trained DNN model,

the original weight tensor of each layer will be efficiently

computed as the linear combinations of smaller tensors for

compression. It is noteworthy that there is no requirement for

fine-tuning or retraining in our method, while these are needed

in the conventional model compression methods.

As shown in Fig.2, our proposed fast DNN compression

method works on the weights of the pre-trained deep model

123

Authorized licensed use limited to: HEFEI UNIVERSITY OF TECHNOLOGY. Downloaded on September 06,2022 at 13:44:46 UTC from IEEE Xplore. Restrictions apply.

layer by layer. The process of our method can be summarized

into three steps, i.e., partitioning weight tensors, decompos-

ing them into small ones and approximating the original

ones. While decomposing the weight tensor within each layer

without extra operations, i.e., fine-tuning or retraining, it can

save lots of compression time. Besides, original data are not

required in our method, which may be restricted by the privacy

protection and access restrictions. In what follows, we describe

the detailed steps of our method:

1) Partition of parameter. Different from existing ap-

proaches that consider the whole weight tensor as a

decomposition object, we take the weight partitions as

the objects for dictionary pair-based fast reconstruction.

Specifically, after extracting the weight tensor from

current layer of the pre-trained DNN model, we divide

them into a series of weight partitions, which will be

detailed shortly. This strategy can deal with the problem

in a more fine-grained way and provide the possibility

for parallel computing of parameters.

2) Tensor decomposition on partitions. This process is
the most critical part to the performance of our com-

pression method. Based on a dictionary pair-based fast

decomposition process on the partitions, we obtain the

dictionaries and coding coefficients to approximate the

original weight partitions. In other words, the knowledge

in the weights learned by DNN model is transferred

into the learned dictionaries and coefficients, so that

the weight tensors can be linearly represented with the

words in the learned dictionary. Since the dictionaries

and coefficients occupy less memory footprint than the

original weight partitions, the weight storage of current

layer can be reduced.

3) Iterate to step 1 to partition and decompose the
weight tensors of the next layer. For conventional

model compression methods, parameter fine-tuning is

usually a necessary process to improve the general-

ization ability damaged by parameter reduction. To

pursue a fast data-free model compression with low

computational cost, we discard the fine-tuning or model

retraining process, and propose a dictionary pair-based

reconstruction method for the partitioned tensor weights.

C. Partition Strategy

The proposed partition strategy divides the weights of DNNs

into partitions for tensor decomposition. We illustrate the

comparison of the conventional tensor decomposition and the

tensor decomposition with our partition strategy in Fig.3.

Given a weight tensor, conventional TD methods directly

decompose it into smaller tensors to approximate the original

one. In our dictionary pair-based TD process, we choose a

partition size and divide the weight matrix into partitions be-

fore decomposition. Then, we decompose the weight partitions

into smaller tensors to reconstruct them. Note that if we set

the partition size to be equal to the size of input channel, we

will take the weight matrix of the current layer as a whole.

Otherwise, if we set the partition size to 1, the weight matrix

Partition n

Partition 2

Partition 1

Weight
Tensor

Partitions Decomposed Tensors

Decomposed Tensors

(a)

(b)

Fig. 3. Comparison of (a) conventional tensor decomposition and (b) tensor
decomposition with our partition strategy.

will be divided into a column vector. That is, the partition

size should be carefully chosen, which will be discussed in

the following experiments.

Based on the partition strategy, the shape of partitions

can also be flexibly defined to adapt to the dictionary pair-

based fast reconstruction process that mainly executes the

fine-grained decomposition on the weight partitions. This

will potentially lead to better compression results. That is,

the partition size will decide the dimension of the learned

dictionaries to affect the performance of our method. We

will demonstrate the positive effects of the partition strategy

later in experiments. Besides, due to the independence of

each partition, the partition strategy provides the possibilities

for parallel computing, which means that there exists the

potential of further improvement. But the parallel computing

problem is clearly beyond the scope of this work. Although

the partition strategy can be performed on the weight tensor

of various layers, it may work better on the fully-connected

layers than convolutional layers. Because the partition edges in

the convolutional layer may destroy the correlations between

adjacent filters which share the same pixels of the input. Thus,

we need to choose a proper partition size to avoid this problem.

D. Dictionary Pair-based Fast TD

The goal of the dictionary-based TD is to approximate

the original weights of each layer in the DNN model by a

dictionary pair learning-based fast reconstruction process.

Given a weight tensor W ∈ R
Cin×Cout , dictionary-based

TD aims at calculating a dictionary D ∈ R
Cin×N with words

and a set of coefficient vectors si ∈ R
Cin . Then, each output

channel wi ∈ R
Cin can be approximately represented as wi =

Dsi so that output W is represented by W = DS. To learn
D, a general optimization problem can be defined as follows:

{D,S} = argmin
D,S

‖W −DS‖2F + λ ‖S‖p (1)

124

Authorized licensed use limited to: HEFEI UNIVERSITY OF TECHNOLOGY. Downloaded on September 06,2022 at 13:44:46 UTC from IEEE Xplore. Restrictions apply.

where ‖S‖p denotes the lp-norm sparsity constraint on S ∈
R

N×Cout . Conventional l0 or l1-norm sparsity constrained

dictionary learning methods achieve the sparse representation

by learning a synthesis dictionary D and obtaining the sparse

coding coefficients S.
However, the l0 or l1-norm sparsity constraint will make

the dictionary-based TD method inefficient in the training

phase. Therefore, we use an efficient dictionary pair-based

TD method with a group sparse representation ability, inspired

by the projective dictionary pair learning (DPL) [4], so that

the knowledge in DNNs can be preserved in the learned

dictionaries with low reconstruction loss in a short time, due to

the fact that costly l0 or l1-norm sparsity constraint is avoided.

Different from conventional dictionary learning (1), our un-

supervised dictionary pair-based TD method learns a dictio-

nary pair, i.e., a synthesis dictionary D ∈ R
Cin×N and an

analysis dictionary P ∈ R
N×Cin , to achieve the goal of

weight approximation. More importantly, the dictionary pair-

based TD method can not only greatly save the compression

time, but also lead to competitive weight tensor approximation

performance. So, we use it to learn dictionaries to approximate

the original weight tensors in DNNs and achieve a fast TD.

It should be noted that our proposed dictionary pair-based

fast reconstruction is different from [4] in twofold. First, their

learning mechanisms are different. Specifically, the DPL in [4]

is a fully-supervised class-specific method, while our dictio-

nary pair-based fast reconstruction method is unsupervised.

Second, their motivations and purposes are different. That

is, DPL is mainly proposed for data classification, while our

method is proposed for DNN compression.

By learning an analysis dictionary P to obtain the approxi-

mated coefficient matrix via embedding, dictionary pair-based

reconstruction error minimization and objective function can

be defined as follows:

{D,P } = argmin
D,P

‖W −DPW ‖2F , s.t. ‖di‖22 ≤ 1, (2)

where the constraint on di provides the stability for the

dictionary pair learning process. The analysis dictionary P
makes it possible to compute the coefficients directly with

original weights.

For optimization, we introduce a variable matrix A ∈
R

N×Cout and relax the problem in Eq.(2) as follows:

{D,P ,A} = argmin
D,P ,A

‖W −DA‖2F + τ ‖PW −A‖2F ,

s.t. ‖di‖22 ≤ 1, (3)

where τ is a scalar constant. At the beginning, we perform

random initialization on bothD and P with the unit Frobenius

norm, then A and {D,P } can be updated alternatively as

follows:

1) Fix {D,P }, update A:

A = (DTD + τI)
−1

(τPW +DTW). (4)

Layer Output Y

Weight Partitions

Layer Input X

1X

2X

nX

X1D1P1W1 X2D2P2W2 XnDnPnWn…

s

Output Channel Cout

outs C
1W

outs C
2W

outs C
nW

W

Weight Matrix

2

n n,
n n n n Fargmin

D P
W D PW

2 2

2
2 2 2 2

,
Fargmin

D P
W D PW

1 1

2
1 1 1 1

,
F

argmin
D P

W D PW

2 inC ND

1
inC ND

inC N
nD

1 1PW

2 2PW

n nPW

In
pu

t C
ha

nn
el

 C
in

Fig. 4. Dictionary pair based fast compression on a fully-connected layer.

2) Fix A, update {D,P }:
P = τAW T (τWW T + γI)−1, (5)

where γ is a small number to prevent WW T being

non-invertible during the iteration.

For D, we can introduce a variable Q to obtain the

solution:⎧⎪⎨
⎪⎩
D(l+1) = argminD ‖W −DA‖2F + ρ

∥∥D(l+1) −Q+ T
∥∥2
F
,

Q(l+1) = argminS ρ
∥∥D(l+1) −Q+ T

∥∥2
F
, s.t. ‖qi‖22 ≤ 1,

T (l+1) = T l +D(l+1) −Q(l+1), update ρ.

(6)

The optimization process usually converges rapidly, with

the iteration stopping when the difference between the

energy in two adjacent iterations is less than 0.01.

By performing the fast reconstruction on the partitioned

weight tensors without original data, our fast compression

method can not only lead to a competitive TD result, but also

reduce the computational cost. The memory footprints of the

dictionaries and coefficients are also less than those of the

original weights. The storage of DNN models can then be

significantly reduced.

E. Fast Compression on Different Layers

It is noteworthy that our compression method is general,

which can work on both the fully-connected and convolutional

layers, so that we can achieve the global parameter compres-

sion for DNN model. In what follows, we will introduce the

details on how to do the compression on fully-connected and

convolutional layers.

1) Implementation on fully-connected layers: We first show

the compression method on fully-connected layers, in which

the weights can be regarded as a two-dimensional matrixW ∈
R

Cin×Cout in each layer. Note that we omit the bias in all

layers, since it usually occupies small storage and has small

impact to the re-construction. Fig. 4 illustates the dictionary

pair based fast compression on a fully-connected layer. With

the partition strategy, we dividing W into a series of weight

partitions Wi ∈ R
s×Cout , we can take each Wi as the object

125

Authorized licensed use limited to: HEFEI UNIVERSITY OF TECHNOLOGY. Downloaded on September 06,2022 at 13:44:46 UTC from IEEE Xplore. Restrictions apply.

for dictionary pair-based reconstruction over each partition.

Specifically, considering the number of dictionary words N ,

we perform the fast dictionary pair learning on the partitions to

decompose them. Then, each weight partition can be linearly

approximated by Wi ≈DiPiWi. That is, we obtain a series

of dictionaries and coefficients to approximate the partitions.

{Di,Pi} = argmin
Di,Pi

‖Wi −DiPiWi‖2F , s.t. ‖dj‖22 ≤ 1.

(7)

In a general fully-connected layer, the output Y ∈ R
CB×Cout

can be simply formulated as follows:

Y = σ(XW). (8)

Then, we can obtain the output Y . After dividing the weight

matrix into a series of partitions, with the linear representation

of Wi = DiPiWi, the new output Y of the layer based on

the weight partitions can be approximated as

Y = σ([X1W1,X2W2, . . . ,XnWn])

= σ([X1D1P1W1,X2D1P1W2, . . . ,XnD1P1Wn]).
(9)

Since the partition size s is fixed on each layer, the reduction

ratio on the weights of each layer αlayer can be computed as

αlayer = 1− N(s+ Cout)

sCout
. (10)

Assuming that αi denotes the reduction ratio of the i-th layer,

the global reduction ratio α on the weights of a DNN model

can be defined as follows:

α =

n∑
i=1

αi =

n∑
i=1

(
1− Ni(si + Ciout)

siCiout

)
. (11)

Note that the size of output channel is decided by the given

layer in DNN model, and we can decide the reduction ratio

by setting the partition size and number of dictionary words.

2) Implementation on convolutional layers: We then show

the compression method on convolutional layers. Although

the weight tensors of convolutional layers contain four-

dimensions, we can also apply our fast TD approach on it. In

each convolutional layer, the weight tensor can be represented

as W ∈ R
Cin×Cout×k×k, which has Cout filters of size

k × k × Cin. It is naturally to understand that adjacent filters

should be highly correlated, since they share the same pixels

and have similar information. Moreover, the high correlation

between adjacent filters makes it possible to exploit the

redundancy among the filters.

For better discovering and utilizing the correlation between

adjacent filters, we unfold the weight tensor into a two-

dimensional matrix denoted by We ∈ R
Cout×(Cin×k×k). That

is, the cth filter of the original weight matrix is expanded to

the row c of partition. To approximate the convolution, we

reshape the input X to Xe in a similar way and the result

of convolution X ∗W can be replaced by XeWe.That is,

it is a dual process to the one that uses the bi-level Toeplitz

matrices to represent the filters [6]. Then, we can apply the

TABLE II
PRE-TRAINED MODEL INFORMATION

Dataset Model Size (MB) Top1 (%) Top5 (%)

ImageNet
VGG-16 527.82 73.360 91.516
ResNet-18 44.59 69.758 89.078
ResNet-50 97.49 76.130 92.862

CIFAR-10
ResNet-20 1.03 91.48 99.65
ResNet-56 3.25 93.27 99.70

TABLE III
COMPARISON OF MODEL COMPRESSION TIME

Model Approach Time ↓ Finetuning?

ResNet-18

ABG [6]
2h 26min No

- Yes
Low-rank [13] 28.0s No
DCP [14] 250h Yes

Ours 12.0s No

ResNet-50

ABG [6]
16h 30min No
160h 37min Yes

Low-rank [13] 56.86s No
Hrank [28] 820h Yes

Ours 22.1s No

VGG-16
ENC-Inf [12] 642.5s No
Low-rank [13] 29.16s No

Ours 21.3s No

proposed partition strategy on We and obtain the weight

partitions Wei ∈ R
s×(Cin×k×k) for the dictionary pair-based

fast reconstruction learning as explained in Section III-E1 to

decompose Wei into Dei and PeiWei.

Different from the fully-connected layer, on convolutional

layers, we should pay more attention to the partition size . If

we choose a small partition size, the correlation of in-partition

filters could be destroyed by the edges of the partitions. If the

partition size is too large, the dictionaries learned may not hold

enough information to represent the filters. Therefore, we have

to tradeoff the representation performance of our dictionary

pair-based method and the correlation of in-partition filters to

choose the partition size in reality.

The number of dictionary words or atoms is similar to

the rank of those LRA methods to compromise between

accuracy loss and compressed model size. According to the

experiments, we tend to set the number of dictionary words

to be relatively larger for the convolutional layers than fully-

connected layers, since there usually exists more redundancy

on the fully-connected layers. Another reason is that the

construction error in current layer will be delivered to the next

layer, and amplified at the end.

IV. EXPERIMENTS

In this section, we evaluate our compression method by

comprehensive experiments, and illustrate the comparison re-

sults with other related methods. Specifically, we first com-

pare the compression time of each DNN model compression

method to evaluate the advantage of computational complexity.

Then, we report the performance of each method to show the

generalization performance. Finally, we perform the ablation

126

Authorized licensed use limited to: HEFEI UNIVERSITY OF TECHNOLOGY. Downloaded on September 06,2022 at 13:44:46 UTC from IEEE Xplore. Restrictions apply.

TABLE IV
PERFORMANCE OF VGG-16 ON IMAGENET

Method Compressed size (MB) Reduction Ratio ↑ Top1 Accuracy Top5 Accuracy
Baseline Compressed Loss Baseline Compressed Loss

Low-rank [13] 201.09 61.90 % - - - 90.60 % 90.31 % 0.29 %
Tucker [15] 507.34 3.88 % - - - 91.52 % 89.40 % 2.12 %
APG [16] 248.90 52.84 % 70.60 % 68.53 % 2.07 % 89.90 % 88.20 % 1.70 %
SVD [19] 137.22 74.00 % - - - 89.90 % 90.00 % -0.10 %
APoZ [21]

with fine-tuning
213.51 59.55 % 68.36 % 70.44 % -2.08 % 88.44 % 89.79 % -1.35 %

APoZ [21]
without fine-tuning

213.51 59.55 % 68.36 % 69.29 % -0.93 % 88.44 % 89.07 % -0.63 %

PCP [27] 110.60 79.05 % - - - 91.52 % 89.00 % 2.52 %
Ours 100.00 81.05 % 73.36 % 71.63 % 1.73 % 91.52 % 90.91 % 0.61 %

TABLE V
PERFORMANCE OF RESNET-18 ON IMAGENET

Method Compressed size (MB) Reduction Ratio ↑ Top1 Accuracy Top5 Accuracy
Baseline Compressed Loss Baseline Compressed Loss

DCP [14] 15.60 65.01 % - 64.11 % - - 85.78 % -
SFP [18] 31.21 30.00 % 70.28 % 67.10 % 3.18 % 89.63 % 87.78 % 1.85 %

Ours 14.90 66.58 % 69.76 % 68.57 % 1.18 % 89.08 % 88.40 % 0.68 %

TABLE VI
PERFORMANCE OF RESNET-50 ON IMAGENET

Method Compressed size (MB) Reduction Ratio ↑ Top1 Accuracy Top5 Accuracy
Baseline Compressed Loss Baseline Compressed Loss

NISP-B [17] 54.77 43.82 % 72.88 % 71.99 % 0.89 % - - -
SFP [18]

with fine-tuning
158.35 30.00 % 76.15 % 74.61 % 1.54 % 92.87 % 92.06 % 0.81 %

SFP [18]
without fine-tuning

158.35 30.00 % 76.15 % 62.14 % 14.01 % 92.87 % 84.60 % 8.27 %

ThiNet [20] 47.23 51.56 % 72.88 % 71.01 % 1.87 % 91.14 % 90.02 % 1.12 %
SSR-L2 [36] 46.54 52.26 % 72.88 % 72.16 % 0.72 % 91.14 % 90.85 % 0.29 %
PCP [27] 57.72 40.80 % 74.30 % 73.40 % 0.90 % 92.10 % 91.50 % 0.60 %
EDP [30] 54.69 43.90 % 75.90 % 75.34 % 0.56 % 92.77 % 92.43 % 0.34 %
H-rank [28] 54.60 44.00 % 76.15 % 74.98 % 1.17 % 92.87 % 92.33 % 0.54 %
DCP [14] 47.23 51.55 % 76.01 % 74.99 % 1.02 % 92.93 % 92.20 % 0.73 %

Ours 44.94 53.90 % 76.13 % 75.48 % 0.65 % 92.86 % 92.62 % 0.24 %

TABLE VII
PERFORMANCE OF RESNET-20 ON CIFAR-10

Method Reduction Ratio ↑ Top1 Accuracy
Baseline Compressed Loss

SFP [18] 30.00 % 92.2 0% 90.83 % 1.37 %
VCNP [32] 38.00 % 92.01 % 91.66 % 0.35 %
FPGM [37] 40.00 % 92.20 % 90.62 % 1.58 %

Ours 44.28 % 91.48 % 91.55 % -0.07 %

study to demonstrate the effects of the dictionary pair-based

reconstruction and the partition strategy.

A. Dataset and Experimental Setting

To demonstrate the effectiveness and efficiency of our com-

pression method, we conduct extensive experiments on full

ImageNet ILSCVR-12 validation dataset [2] and CIFAR-10

dataset [34]. We evaluate and compare the performance of

our dictionary pair-based TD method with others on five pop-

ular DNN models, i.e., VGG-16 [1], ResNet-18, ResNet-50,

TABLE VIII
PERFORMANCE OF RESNET-56 ON CIFAR-10

Method Reduction Ratio ↑ Top1 Accuracy
Baseline Compressed Loss

NISP [17] 42.60 % 93.04 % 93.01 % 0.03 %
PFEC [31] 13.70 % 93.06 % 93.04 % 0.02 %
VCNP [32] 45.00 % 93.04 % 92.26 % 0.78 %
KSE [33] 54.73 % 93.03 % 93.23 % -0.20 %
EDP [30] 45.82 % 93.61 % 93.61 % 0.00 %
H-rank [28] 42.35 % 93.26 % 93.17 % 0.09 %
SFP [18] 40.00 % 93.59 % 93.3 5% 0.24 %
FPGM [37] 40.00 % 93.59 % 93.49 % 0.10 %

Ours 44.60 % 93.27 % 93.27 % 0.00 %

ResNet-20 and ResNet-56 [11]. For different DNN models, we

will use different partition strategies and numbers of dictionary

words. All of the dictionaries and coefficient matrices are

stored in float16 for further compression. The original model

accuracy evaluated by the experiments and the original model

size are described in Table II.

127

Authorized licensed use limited to: HEFEI UNIVERSITY OF TECHNOLOGY. Downloaded on September 06,2022 at 13:44:46 UTC from IEEE Xplore. Restrictions apply.

All the experiments are conducted within the PyTorch

framework [29] on a NVIDIA GeForce GTX 1080Ti GPU

and an Intel (R) Core (TM) i5-7500 3.40 GHz CPU with

8GB memory. All of the pre-trained models evaluated on

ImageNet are provided by the PyTorch model zoo [35].

Our source code is released on GitHub: https://github.com/

DiamondSheep/Quantize DPL.

B. Compression Speed

One of the most significant advantage of our proposed fast

compression method is its compression efficiency and low

computational cost in the compression process, due to avoiding

the time-consuming fine-tuning or retraining process. As such,

we would like to compare the compression speed of each

method on one machine with the same configurations for the

fair comparison.

To demonstrate the efficiency of our scheme, we compare

the compression time with five related works, i.e., ABG [6],

ENC-Inf [12], Low-rank [13], Hrank [28] and DCP [14]. The

results of compression time are described in Table III. We

see clearly that our scheme offers a huge advantage in terms

of compression speed. Specifically, our compression method

finishes the weight compression on all the DNN models

within 30 seconds, which is much faster than other compared

methods, especially for those with fine-tuning. The Low-

rank compression method [13] follows us, whose compression

time is also promising. However, it can only compress the

convolutional layers, so it cannot achieve a global compression

for DNN models. In contrast, our dictionary pair-based fast

method can be used to compress the weights of both convo-

lutional layers and fully-connected layers in a short time.

C. Performance Comparison of DNN Models with Weight
Compression

In this study, we evaluate the performance of the existing

VGG-16 and ResNet models on the ImageNet and CIFAR-10

datasets, in terms of reduced model size and accuracy loss.

1) VGG-16 on ImageNet: The deep model of VGG-16

contains 13 convolutional layers and 3 fully-connected lay-

ers, and occupies 527.82MB on device. We compare the

performance of our compression method with the following

related approaches, including Low-rank [13], Tucker [15],

APG [16], SVD [19], APoZ [21] and PCP [27]. The perfor-

mance comparison results are described in Table V. We see

that VGG-16 model deployed with our compression method

performs the best among all the compared meth-ods, which

reduces the VGG-16 memory footprint to 100MB with 1.73

% top1 accuracy loss and 0.6 % top5 accuracy loss. It is also

noteworthy that our method achieves the model reduction and

maintains the performance of DNN models without original

data in a short time, which demonstrates that our dictionary

pair-based data-free method can better preserve the knowledge

in DNN models. In other words, our dictionary pair-based fast

TD method has a remarkable ability to exploit the redundancy

in existing DNN models.

2) ResNet on ImageNet: The ResNet architecture [11]

utilized shortcuts to avoid vanish-ing gradients and simplify

the model. In this study, we explore the performance of

each compression method on both ResNet-18 and ResNet-50

models with well-designed architectures. Specifically, ResNet-

18 has one convolutional layer, one fully-connected layer and

eight residual blocks including two convolutional layers with

a shortcut. ResNet-50 of bottleneck architectures is built with

one convolutional layer, one fully-connected layer and 16

bottleneck blocks consisting of three convolutional layers with

a shortcut. Different from VGG-16, ResNet models are more

compact and harder to be compressed, since there exists less

redundancy inside. Besides, the weights of the fully-connected

layer in ResNet are less than those of conventional DNN

models. As such, it will be more challenging to decompose

the weight tensors of those ResNet-based deep models, while

preserving their performance at the same time.

In this study, we compare the performance of our compres-

sion method with the following several related compression

approaches: NISP [17], SFP [18], ThiNet [20], SSR-L2 [36],

PCP [27], EDP [30], H-rank [28] and DCP [14]. The experi-

mental results are described in Tables IV and V. We can see

that: 1) Our proposed data-free compression method performs

the best among all the competitors; 2) For the ResNet-18

model, we can reduce the model size to 14.9MB with 1.18

% top1 accuracy loss and 0.68 % top5 accuracy loss; 3) For

the ResNet-50 model, we reduced 53.90 % model storage with

0.65 % top1 accuracy loss and 0.24 % top5 accuracy loss.

3) ResNet on CIFAR-10: For CIFAR-10 dataset, we evalu-

ate two DNN models, i.e., ResNet-20 and ResNet-56, deployed

with different model compression methods. We compare the

performance of our data-free model compression method with

NISP [17], PFEC [31], VCNP [32], KSE [33], EDP [30], H-

rank [28], SFP [18] and FPGM [37], in this study. The com-

parison results in terms of reduced model size and accuracy

loss are described in Tables VII and VIII, from which we can

observe that our method can still deliver better performance

than other compared methods based on both ResNet-20 and

ResNet-56. Specifically, our method can reduce 53.90 %

storage of the original model with top1 accuracy 91.55 % for

ResNet-20, and the compressed model obtains higher accuracy

than the original one. For ResNet-56, we achieve a storage

reduction of 44.60 % with no accuracy loss. In summary, com-

pared with other competitors, our method achieves the same

performance with low computation, and without extra data and

fine-tuning process.

D. Ablation Study

The dictionary pair-based fast reconstruction and the parti-

tion strategy are two most core contributions of this paper, so

we would like to investigate their effects respectively.

1) Effect of dictionary pair-based reconstruction: We first

conduct the ablation studies on the effects of the analysis dic-

tionary P by comparing the results with the orignal dictionary-

based TD method without P . That is, we directly compute a

synthesis dictionaryD and a coefficient matrix S, by replacing

128

Authorized licensed use limited to: HEFEI UNIVERSITY OF TECHNOLOGY. Downloaded on September 06,2022 at 13:44:46 UTC from IEEE Xplore. Restrictions apply.

TABLE IX
COMPARISON RESULTS BASED ON RESNET-18

Method Compressed
Size (MB) Top1 Accuracy Top5 Accuracy

Ours 14.9 68.57 % 88.40 %
Without P 14.9 56.48 % 82.35 %

the term P with S in Eq. (2). For the fair comparison, we

take the ResNet-18 model as an example, and evaluate it

based on ImageNet dataset with the same configurations, e.g.,

sparsity constraint, partition size, number of dictionary words

and setting of dictionary learning.

For the dictionary-based reconstruction without P , we ini-

tialize the dictionary D with the original weight partitions

rather than random matrix, since we experimentally observe

that if we initialize D randomly as our method, it will

not reconstruct the weight tensors and the performance of

compressed model will be rather bad.

The comparison results of the dictionary-based reconstruc-

tion and dictionary pair-based reconstruction are described

in Table IX. With the same compressed model size, our

method outperforms the one without analysis dictionary in

terms of accuracy. Note that this also demonstrates that our

dictionary pair-based reconstruction method can preserve more

knowledge in DNN models, implying that the approximated

coefficient matrix by embedding contains more useful infor-

mation of the weight partitions.

2) Effect of weight partitions: In this study, we conduct

an ablation study to evaluate the effects of the partition

strategy, as well as the damage caused by the partitions

to the correlation of convolutional filters, we con-duct the

ablation study. Specifically, we perform our dictionary pair-

based method with different partition size and numbers of

dictionary words for the convolutional layers of ResNet-18

model. The comparison results are presented in Fig.5.

From the curves in Fig.5, we find the negatively correlation

between compressed model size and accuracy loss. That

is, the lower the accuracy loss, the better the compression

performance. The results also show that ResNet-18 deployed

with our method performs the best when the partition size

on convolutional layers is set to 288. In such case, with the

same storage reduction, our method can preserve the most

useful information of the ResNet-18 model, since its accuracy

loss is lower than other settings. In other words, if we choose

a smaller partition size than 288, the accuracy loss will be

increased due to the damage of filter correlation. In contrast,

if we choose a larger partition size, the accuracy loss will also

be increased, implying that the dictionary pair-reconstruction

process in our method will lose useful information in the

weight partitions.

V. CONCLUSION

We have discussed the problem on how to reduce the

model size of existing DNN models efficiently, with important

0

2

4

6

8

10

12

10 12 14 16 18 20

To
p1

 A
cc

ur
ac

y
Lo

ss
 (%

)

Model Size After Compression (MB)

Partition Size=18

Partition Size=36

Partition Size=72

Partition Size=144

Partition Size=288

Partition Size=576

0

2

4

6

8

10

12

10 12 14 16 18 20

To
p5

 A
cc

ur
ac

y
Lo

ss
 (%

)

Model Size After Compression (MB)

Partition Size=18

Partition Size=36

Partition Size=72

Partition Size=144

Partition Size=288

Partition Size=576

Fig. 5. Performance vs. different partition sizes on ResNet-18

information in the weight tensors preserved and without orig-

inal data. Specifically, we have proposed a general dictionary

pair-based data-free fast neural network compression method,

which can effectively reduce the memory storage and model

size of existing DNN models within a short time, with low

performance loss. Given a pre-trained DNN model, we first

present a partition strategy to divide the parameters of each

layer into weight partitions. Then, by performing the dictio-

nary pair-based fast reconstruction on the partitions, we can

potentially preserve the important information and discover

more fine-grained information to ensure the performance. Note

that our proposed data-free fast compression method can be

easily extended to all the DNN models and deployed on both

the convolutional and fully-connected layers.

Extensive experiments have demonstrated the effectiveness

129

Authorized licensed use limited to: HEFEI UNIVERSITY OF TECHNOLOGY. Downloaded on September 06,2022 at 13:44:46 UTC from IEEE Xplore. Restrictions apply.

of our method in terms of reduced model size and accuracy

loss. In future, we will also consider how to deploy the imple-

mentation of our compression scheme on hardware devices. In

addition, the automatic determination strategy of the number of

dictionary words in each layer still needs further investigation.

ACKNOWLEDGMENT

This work is partially supported by National Natural Sci-

ence Foundation of China (62072151, 62020106007), Anhui

Provincial Natural Science Fund for Distinguished Young

Scholars (2008085J30), and the Fundamental Research Funds

for Central Universities of China (JZ2019HGPA0102). Zhao

Zhang is the corresponding author.

REFERENCES

[1] Simonyan, Karen, and Andrew Zisserman, “Very deep convolu-
tional networks for large-scale image recognition.” arXiv preprint
arXiv:1409.1556, 2014.

[2] Deng, Jia, “Imagenet: A large-scale hierarchical image database.” IEEE
conference on computer vision and pattern recognition, 2009.

[3] Rigamonti, Roberto, “Learning separable filters.” Proceedings of the
IEEE conference on computer vision and pattern recognition, 2013.

[4] Gu, Shuhang, “Projective dictionary pair learning for pattern classifica-
tion.” Advances in neural information processing systems, 2014.

[5] Denton, Emily, “Exploiting linear structure within convolutional net-
works for efficient evaluation.” arXiv preprint arXiv:1404.0736, 2014.

[6] Stock, Pierre, “And the bit goes down: Revisiting the quantization of
neural networks.” arXiv preprint arXiv:1907.05686, 2019.

[7] Han, Song, Huizi Mao, and William J. Dally, “Deep compression:
Compressing deep neural networks with pruning, trained quantization
and huffman coding.” arXiv preprint arXiv:1510.00149, 2015.

[8] Howard, Andrew G., “Mobilenets: Efficient convolutional neural net-
works for mobile vision applications.” arXiv preprint arXiv:1704.04861,
2017.

[9] Umuroglu, Yaman, “Finn: A framework for fast, scalable binarized
neural network inference.” Proceedings of the 2017 ACM/SIGDA In-
ternational Symposium on Field-Programmable Gate Arrays, 2017.

[10] Lebedev, Vadim, “Speeding-up convolutional neural networks using fine-
tuned cp-decomposition.” arXiv preprint arXiv:1412.6553, 2014.

[11] He, Kaiming, “Deep residual learning for image recognition.” Pro-
ceedings of the IEEE/CVF conference on computer vision and pattern
recognition, 2016.

[12] Kim, Hyeji, Muhammad Umar Karim Khan, and Chong-Min Kyung,
“Efficient neural network compression.” Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2019.

[13] Tai, Cheng, “Convolutional neural networks with low-rank regulariza-
tion.” arXiv preprint arXiv:1511.06067, 2015.

[14] Liu, Jing, “Discrimination-aware network pruning for deep model
compression.” IEEE Transactions on Pattern Analysis and Machine
Intelligence, 2021.

[15] Kim, Yong-Deok, “Compression of deep convolutional neural net-
works for fast and low power mobile applications.” arXiv preprint
arXiv:1511.06530, 2015.

[16] Huang, Zehao, and Naiyan Wang, “Data-driven sparse structure selection
for deep neural networks.” Proceedings of the European conference on
computer vision, 2018.

[17] Yu, Ruichi, “Nisp: Pruning networks using neuron importance score
propagation.” Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2018.

[18] He, Yang, “Soft filter pruning for accelerating deep convolutional neural
networks.” arXiv preprint arXiv:1808.06866, 2018.

[19] Kim, Hyeji, and Chong-Min Kyung, “Automatic rank selection for high-
speed convolutional neural network.” arXiv preprint arXiv:1806.10821,
2018.

[20] Luo, Jian-Hao, Jianxin Wu, and Weiyao Lin, “Thinet: A filter level
pruning method for deep neural network compression.” Proceedings of
the IEEE international conference on computer vision, 2017.

[21] Hu, Hengyuan, “Network trimming: A data-driven neuron prun-
ing approach towards efficient deep architectures.” arXiv preprint
arXiv:1607.03250, 2016.

[22] Aizenberg, Igor, Antonio Luchetta, and Stefano Manetti, “A modified
learning algorithm for the multilayer neural network with multi-valued
neurons based on the complex QR decomposition.” Soft Computing
16.4, pages 563-575, 2012.

[23] Gittens, Alex, and Michael Mahoney, “Revisiting the nystrom method
for improved large-scale machine learning.” International Conference on
Machine Learning. PMLR, 2013.

[24] Oseledets, Ivan V, “Tensor-train decomposition.” SIAM Journal on
Scientific Computing 33.5, pages 2295-2317, 2011.

[25] Deng, Lei, “Model compression and hardware acceleration for neural
networks: A comprehensive survey.” Proceedings of the IEEE 108.4,
pages 485-532, 2020.

[26] Phan, Anh-Huy, “Stable low-rank tensor decomposition for compression
of convolutional neural network.” European Conference on Computer
Vision, 2020.

[27] Guo, Jinyang, “Model Compression using Progressive Channel Pruning.”
IEEE Transactions on Circuits and Systems for Video Technology, 2020.

[28] Lin, Mingbao, “Hrank: Filter pruning using high-rank feature map.”
Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2020.

[29] Paszke, Adam, “Pytorch: An imperative style, high-performance deep
learning library.” arXiv preprint arXiv:1912.01703, 2019.

[30] Ruan, Xiaofeng, “EDP: An Efficient Decomposition and Pruning
Scheme for Convolutional Neural Network Compression.” IEEE Trans-
actions on Neural Networks and Learning Systems, 2020.

[31] Li, Hao, “Pruning filters for efficient convnets.” arXiv preprint
arXiv:1608.08710, 2016.

[32] Zhao, Chenglong, “Variational convolutional neural network pruning.”
Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2019.

[33] Li, Yuchao, “Exploiting kernel sparsity and entropy for interpretable
CNN compression.” Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 2019.

[34] Krizhevsky, Alex, and Geoffrey Hinton, “Learning multiple layers of
features from tiny images.” Tech Report, 2009.

[35] https://pytorch.org/docs/stable/torchvision/models
[36] Lin, Shaohui, “Toward compact convnets via structure-sparsity regular-

ized filter pruning.” IEEE transactions on neural networks and learning
systems 31.2 pages 574-588, 2019.

[37] He, Yang, “Filter pruning via geometric median for deep convolutional
neural networks acceleration.” Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, 2019.

130

Authorized licensed use limited to: HEFEI UNIVERSITY OF TECHNOLOGY. Downloaded on September 06,2022 at 13:44:46 UTC from IEEE Xplore. Restrictions apply.

